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Abstract

The comprehensive characterization of the structure of complex networks is
essential to understand the dynamical processes which guide their evolution.
The discovery of the scale-free distribution and the small-world properties
of real networks were fundamental to stimulate more realistic models and
to understand important dynamical processes related to network growth.
However, the properties of the network borders (nodes with degree equal to 1),
one of its most fragile parts, remained little investigated and understood. The
border nodes may be involved in the evolution of structures such as geographical
networks. Here we analyze the border trees of complex networks, which are
defined as the subgraphs without cycles connected to the remainder of the
network (containing cycles) and terminating into border nodes. In addition
to describing an algorithm for identification of such tree subgraphs, we also
consider how their topological properties can be quantified in terms of their
depth and number of leaves. We investigate the properties of border trees for
several theoretical models as well as real-world networks. Among the obtained
results, we found that more than half of the nodes of some real-world networks
belong to the border trees. A power-law with cut-off was observed for the
distribution of the depth and number of leaves of the border trees. An analysis
of the local role of the nodes in the border trees was also performed.

PACS numbers: 89.75.Fb, 02.10.0x, 89.75.Da, 87.80.Tq

1. Introduction

Complex networks are characterized by uneven distribution of connectivity which suggests
that their growth is not governed by random events (e.g. [1]). Some special patterns in these
networks, also known as network motifs, have been found to strongly affect dynamical aspects
related to resilience, transport, network maintenance and even more specific functions of the
networks. While the smaller motifs are believed to be the building blocks of complex networks
[2], other motifs may appear as a consequence of specific network requirements and growth
dynamics. For instance, chains of nodes [3, 4] can appear between two nodes or at the border

of networks.
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Figure 1. Some examples of border trees (gray regions) in a small network.

Although many network motifs have been largely characterized in the last few years
(e.g. [2-5]), some remain uncharacterized, implying that their role in the network function
is not known yet. One such example is the border tree, defined as subgraphs without cycles
connected to the remainder of the network (see figure 1 for some examples). Such motifs
(as well as other peripheral motifs) can be the result of the peripheral growth of the network,
i.e. the network can evolve as a tree, where each ‘branch’ of nodes emerges from the main
connected component toward the outside of the network.

Border trees are related to k-core decomposition (e.g. [6]) of the outmost layers. The
k-core approach is an interesting way to describe the topology of real networks in terms of
subgraphs. The k-core is obtained by removing from the network all vertices with degree
smaller than k. This process is called k-core decomposition. After such a removal, the vertices
in the resulting network that have degree lesser than & are removed and the network is analyzed
again. When no further removal is possible, the non-empty resulting subgraph corresponds
to the k-core of the original network [6]. Fundamental statistical properties of k-core are
discussed by Dorogvtesev ef al [6] and investigations about topology of the Internet using
k-core decomposition are presented by Carmi ef al [7]. Besides, protein interaction networks
have been analyzed in terms of k-cores by Wuchty and Almaas [8], who considered the relation
between k-cores and lethality. The k-core approach has also been applied in order to predict
the function of proteins [9]. In the case of tree identification, if a network has no 1-shell, it
means that no border trees can be found in its structure. Therefore, k-core decomposition can
be considered as a preliminary and complementary investigation about the presence of border
trees in networks. The number of nodes in the border trees can be computed as the size of the
1-shell plus the number of roots.

Besides the importance of understanding network growth, the study of border trees can
also help to better characterize complex networks. In this work we provide an algorithm to
find border tree motifs as well as a statistical method to characterize such structures through
two measurements: their depth and number of leaves. The first property corresponds to the
largest distance between the root (node which also belongs to a loop) and the leaves (nodes
with degree 1) of a border tree. The other measurement is the number of leaves of the border
tree, i.e. the number of possible paths from the root to the outer nodes. We applied the
methodology in order to investigate the occurrence of such motifs in real-world networks as
well as networks generated by traditional theoretical models.

The paper is organized as follows. We start by defining border trees and follow by
presenting an algorithm for their detection, which is then applied for the characterization of
several theoretical and real-world networks.
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2. Border trees: basic concepts

In graph theory, a tree is defined as a graph in which every two vertices are connected by
exactly one path. We define the kernel of any network as the main connected component
whose vertices belong to at least one loop. The border tree is therefore a tree located at the
periphery of the kernel, but with just one connection to it, provided by its root. Another way
of defining the root of a border tree is as a vertex which also belongs to at least one loop. The
leaves of a border tree are its extremities, i.e. vertices with unit degree. The largest distance
between the root and the leaves of a border tree gives its depth, and the number of paths from
its root to its leaves gives its number of branches, which is the same as its number of leaves.
Vertices at the maximum distance from the root are considered to be at level 0.

In order to find the border trees in a given network, the following algorithm can be applied.
We start by their leaves, going up to vertices of higher levels until their roots are reached.
Thus, initially we find all vertices of degree 1 and start a tree from each of them. At this stage
each tree has only one vertex and its neighbor, which is at one level higher, is added to the
respective tree and becomes its root. The next stage is to recursively verify whether the vertex
at the top of each tree has more than one neighbor, ignoring those at lower levels. If there are
two or more neighbors, keep this tree in a waiting list. If there is just one, add it to the tree and
join any other trees in the auxiliary list which has this vertex at its top. The algorithm ends
when all trees are in the auxiliary list and the trees can no longer be joined. The isolated trees
found by this algorithm are ignored and the resulting roots of all the trees are those vertices
which also belong to at least one loop.

3. Databases

The models considered in this work are the Erdds and Rényi (ER) random graph [10], the Watts
and Strogatz (WS) small-world model [11], Barabési and Albert (BA) scale-free model [1] and
a geographical network (GN). The ER network model defines N vertices and a probability p of
connecting each pair of such vertices. The degree distribution of networks generated by this
model is a Poisson distribution. To construct a SW network, one starts with a regular lattice of
N vertices in which each vertex is connected to « nearest neighbors in each direction, resulting
in 2k connections. Next, each edge is randomly rewired with probability p. In this way, when
p = 0 the graph is an ordered lattice with a high number of loops but large shortest distances
and when p — 1, the network becomes random with short distances but few loops. Note that
when p = 1, WS networks do not become an ER network. Watts and Strogatz have shown
that, in an intermediate case (0 < p < 1), both short distances and a large number of loops are
present. The BA network model is based on two rules: (i) growth, the network is generated
starting with a set of m( vertices; afterwards, at each step of the construction the network
grows with the addition of new vertices with m edges; and (ii) preferential attachment, the
vertices which receive the new edges are chosen following a linear preferential attachment
rule, i.e. the probability of the new vertex i to connect with an existing vertex j is proportional
to the degree of j, P(i — j) = k; / >, ky. Therefore, the most connected vertices have
greater probability of receiving new vertices, which leaves to emergence of hubs. The GN
model generates networks as described in [4] where N vertices are randomly distributed inside
a L = +/N length square and two vertices are connected with probability p ~ e=*¢, where d
is the geographical distance between them and X is a model parameter chosen to generate the
desired average vertex degree. Such model was initially proposed by Waxman [12] in 1998 to
explain the Internet topology. Though this model tries to reproduce the connection structure
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between routers, the degree distribution is not a power law, but similar to that obtained for the
ER network model.

All analyzed models had N = 1000 vertices and were designed to have average degrees
(k) = 2,4 and 6. The probability of the rewiring process in the WS model was 0.2 and x =
1, 2 and 3. For the GN model, the A used was 1.7, 1.22 and 0.97. A total of 100 realizations
of each model were considered.

We also considered 16 real-world networks divided into the following five classes.

(1) Scientific collaboration networks. Collaboration networks are formed by scientists
that publish papers together. We considered four different networks: (i) astrophysics
collaboration network, formed by scientists who posted preprints on the astrophysics
archive, between the years 1995 and 1999 [13]; (ii) condensed matter collaboration
network, composed by scientist posting preprints on the condensed matter archive from
1995 until 2005 [13]; (iii) high-energy theory collaboration network, composed by
scientists who posted preprints on the high-energy theory archive from 1995 until 1999
[14, 15] and (iv) scientific collaboration of complex network researches compiled by
Newman from the surveys [16, 17].

(2) Information networks. We considered three basic information networks: (i) Roget’s
thesaurus network [18, 19], formed by 1022 categories in the 1879 edition of Peter Mark
Roget’s Thesaurus of English Words and Phrases [18, 19], where two categories i and j are
linked if Roget gives a reference to j among the words and phrases of i; (i) Wordnet [19],
composed of vertices, which represent concepts, and edges, which represent semantic
relations between the concepts; and (iii) World Wide Web, which is a network of Web
pages belonging to nd.edu domain connected by hyperlinks from one page to another
[20]".

(3) Word adjacency networks in books. In this kind of network, a directed edge is established
between two words that are adjacent in the text. Stop words (e.g. articles, prepositions,
conjunctions, etc) were removed and the remaining words were lemmatized [21]. We
considered the books David Copperfield by Charles Dickens, Night and Day by Virginia
Woolf and On the Origin of Species by Charles Darwin [21, 22].

(4) Technological networks. These networks are designed typically for distribution of some
commodity or resource such as power or information. We considered three technological
networks: (i) Internet at the level of autonomous systems (AS), where two AS are
connected according to BGP (Border Gateway Protocols) tables posted by the University
of Oregon Route Views Project’; (ii) the US Airlines Transportation Network, composed
of US airports connected by flights [19] and (iii) the Western States Power Grid, composed
of generators, transformers and substations connected by the high-voltage transmission
lines [11].

(5) Biological networks. Biological interactions are naturally modeled by complex networks.
We take into account the following networks: (i) the neural network of Caenorhabditis
elegans, where neurons are represented by nodes and the synapses by edges [11, 23];
(ii) a transcriptional regulation network of the Escherichia coli, which is formed by
operons (an operon is a group of contiguous genes that are transcribed into a single mRNA
molecule), where each edge is directed from an operon that encodes a transcription factor
to another operon which is regulated by that transcription factor; and (iii) a protein—protein
interaction network of Saccharomyces cerevisiae, which is formed by proteins connected

I A L Barabdsi, Center for Complex Network Research, available at http://www.nd.edu/~networks/resources.htm.
2 M E J Newman, Mark Newman’s Network data, available at http://www-personal.umich.edu/~mejn/netd ata.
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according to physical interactions. This network was constructed by Sprinzak ef al [24]
using the non-redundant databases of interacting proteins.

The originally directed networks were transformed into undirected versions by using the
symmetrization method, which corresponds to reciprocating all directed edges.

4. Results and discussion

Each considered network had all border trees identified and separated, being subsequently
measured with respect to their depth and number of leaves. Figures 2 and 3 present the
distribution of depth and number of leaves found in the real networks and in the respective
random counterparts. It is interesting to note that most distributions follow a power law
with an exponential cut-off (P(x) & (x + Xg)? e~ **0)/%) [25]. The WWW, Wordnet, protein
interaction and AS presented power-law distributions (P(x) & (x + X¢)?). This effect suggests
that trees with large depth and number of leaves are very rare.

The importance of border trees is shown in table 1. As we can see, in collaboration
networks, the border trees represent 11.2 to 25.2 % of the nodes in the network. In this
case, the border trees tend to have small depth and small number of leaves. For information
networks, specifically for the Wordnet and WWW, more than half of the nodes of these
networks belong to border trees. Therefore, border trees are fundamental to define the
structure of these networks. The same happens with biomolecular networks, namely genetic
networks and protein interaction networks. For technological networks, the border trees are
fundamental to define the structure of the Internet and the power grid. On the other hand,
for book networks, the border trees represent a small fraction of the network. This effect is a
result of the sequential process in which such networks are generated.

In order to know if a range of depths is important (the same applies to the number of
leaves), a set of 1000 randomized networks were obtained by the rewiring process [26, 27]
for each considered network. The rewiring starts with a network that already has the desired
degree distribution, and then iteratively chooses two edges and interchanges the corresponding
attached vertices. This process is frequently used in sociology [28, 29]. The border trees of
each real network were found, measured and characterized in terms of the respective Z-scores.
This statistical measurement is given as

7 — XReal - <X> , (1)

o

where Z is the Z-score, Xgey is the number of border trees with a certain range of depths
(the same for the number of leaves), and (X) and o are, respectively, the average and the
standard deviation of the randomized networks for the same range of depths. In the case
of the theoretical networks, for each of their 100 realizations, 1000 randomized versions
were created. The results concerning the Z-scores of the depth and the number of leaves
of the considered networks are shown in table 2. Generally speaking, positive values of the
Z-score index suggest that the network of interest contains more border trees than the respective
randomized counterpart; the opposite is observed for negative values. Note that 95% of
the randomized networks are comprised between Z-score values from —2 to 2. Therefore,
only Z-scores with absolute values larger than 2 will be considered henceforth.

As can be seen in table 2, the rewiring procedure tends to eliminate the larger structures in
the network, such as large border trees. The networks obtained after such a randomization tend
to present a large quantity of small border trees, with few branches as well as a small quantity
of large border trees with many branches. Z-score values smaller than —2 indicate that the
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Figure 2. Distribution of depth of the border trees obtained for each real network (black points)
and of the average of depth for the respective random counterparts (gray points).

respective network presents a total number of border trees which is substantially smaller than
the respective randomized counterparts.
Among the analyzed models, significant Z-score values were obtained only for the BA
networks with average degree 2, WS networks with average degree 2 and GN with average
degrees of 2.08, 3.97 and 6.18. The BA network with average degree 2 is, by itself, organized
as a large tree. In the case of the WS networks with average degree 2, the growth mechanism
implies the creation of long chains, resulting in deep trees. At the same time, portions of the
network are rewired giving rise to long trees with many leaves. The GN networks also present
larger trees with many leaves as a consequence of border effects during the growth dynamics.
GN networks start as isolated nodes inside a box, so that the nodes near the border tend to
establish few connections, mainly with the nearest node. As a consequence, trees appear along
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Figure 3. Distribution of number of leaves of the border trees obtained for each real network
(black points) and of the average number of leaves for the random counterparts (gray points).

the border of the bounding box. The smaller the average degree of the network, the larger the
probability of obtaining chains of nodes, implying the appearance of deep border trees with
many leaves. The larger the average degree, the smaller the chance of getting deep border trees.

The majority of the real-world networks exhibit deeper and highly branched border trees
than the respective random counterparts. In the case of the collaboration networks, this effect is
observed particularly for the networks defined by collaborations between researchers from the
areas of astrophysics, condensed matter and high-energy theory. However, the border trees of
these networks are not particularly deep or branched (depths between 2 and 3 for astrophysics
and condensed matter, and 6 for high theory energy; 3 to 6 leaves for astrophysics and from
2 to 8 leaves for condensed matter). A possible cause of these structures is the fact that the
majority of researchers from these areas maintain collaborations with researchers from areas
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Table 1. The statistics of border trees in complex networks. The column Pyoges gives the percentage
of nodes in border trees, Nirees the number of border trees, Npodes the average number of nodes in
the border trees, depth the average depth of trees and Nieaves the average number of leaves of the
border trees present in each network.

Class Networks Network size Prodes  Nirees  Nnodes Depth MNicaves
Models BA (k) =2 1000 100.0% 1 1000 += 0.0 9.06 + 0.01 663.9 £ 0.1
ER (k) =2 1000 51.0% 166 31+£0.0 1.62+0.01 14+£0.0
(ky =4 1000 14.4% 68 21+00 1.08£0.00 1.0£0.0
(k) =16 1000 2.9% 14 20£00 1.01£0.00 1.0+0.0
WS (k) =2 1000 95.2% 21 446+1.1 13.89+020 7.6+0.2
GN (k) =2 1000 47.0% 144 33+0.0 1.69+0.01 1.5+£0.0
(k) =4 1000 16.0% 71 23+£00 1.18+0.00 1.14+0.0
(k) =16 1000 3.6% 17 21+00 1.07£000 1.0£0.0
Collaboration Astrophysics 16 706 11.2% 797 234+08 1.06+026 13+£0.7
Netscience 1461 12.7% 81 23+£06 1.01£0.11 1.3+£05
Cond-mat 40421 12.6% 2095 24+£08 1.06+025 14408
High-energy 8361 252% 828 25+£09 1.15+043 14407
Information  Roget 1022 9.9% 42 24+£07 129+051 1.1+£0.3
Wordnet 82670 60.6% 9248 54+£75 1254£055 41+68
WWWwW 325729 56.2% 17070 10.7£60.5 1.134+£047 95+60
Books David Copperfield 11378 0.6% 30 22+£05 1.00£000 12405
Night and day 7959 04% 14 24+07 1.00£0.00 14+£0.7
On the origin of species 6973 04% 12 2.1+0.3 1.00+0.00 1.1+0.3
Technological Internet (AS) 22 963 42.3% 1712 57159 107027 46=£158
US airports 332 24.4% 26 31+23 1.00£000 21£23
Power grid 4941 48.4% 805 3020 139+£080 15+12
Biological Neural network 297 6.1% 3 60+46 1.00£0.00 50+4.6
Genetic network 423 63.8% 44 6.1£54 130£055 4.6+50
Protein interaction 4135 49.5% 570 36£53 125£052 23+£46

not considered in the construction of the collaboration networks used in this work. In other
words, the border trees of these networks are partly a consequence of the incompleteness of
the data. Also observe that border trees arise from papers with two authors, but not all papers
with two authors became a border tree.

The presence of a considerable number of deep and branched border trees was also verified
for the information networks, though in a lesser scale than for Roget’s thesaurus. The tree
heights and extensive branching are more expressive in the Wordnet and WWW. In the latter
case, there is a large number of deep border trees and branches (between 9 and 5324). Such a
connectivity structure is likely a consequence of the sampling of the WWW (see [4]). More
specifically, the leaves are likely to have connections with sites outside the analyzed network.

The book networks present some intrinsic properties in the sense that there are a very
small number of border trees, presenting few leaves (2 or 3). Such properties are a direct
consequence of the way in which these networks were constructed. More specifically, all
pairs of subsequent words in a paragraph generate a respective edge; however, no edges are
generated when proceeding from a paragraph to the next. Therefore, the sequential linking of
the nodes promotes the generation of several loops, while the trees are a consequence of the
paragraphs’ structure.

The technological networks are also substantially distinct from the others as far as the
border trees are concerned. The Internet and power grid network present a particularly large
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Table 2. Statistical evaluation of border trees in the considered networks. N, indicates the
number of trees encountered in each network with a given depth or number of leaves, Npng is the
corresponding values for average of the number of trees in the random counterparts and SD is
the standard deviation. The ranges correspond to depths (or the number of leaves) which depart
significantly from the respective randomized versions (positive and negative values indicate that
the border trees are above or below the random counterparts).

Depth Number of leaves
Networks Range  Nreal Niand £ SD Z-score Range Nreal Niand £ SD Z-score
Models
BA (k) =2 1-7 0 166.0 £ 0.8 —201.1 1-634 0 166.3 £ 0.8 —203.1
8-11 1 0.24+0.1 14.6 635-684 1 0.0 +0.0 ND
WS (k) =2 1-5 10 1647 £ 0.8 —186.3 1-5 16 1658 +£0.8 —184.6
6-152 11 1.6 £ 0.1 71.9 6-157 5 0.5+0.1 65.0
GN (k) =2 1-3 134 159.1+£09 —-283 1-2 131 156.4+09 =275
420 11 7.8+0.3 11.0 3-18 13 10.5+0.3 8.7
GN (k) =4 1-1 61 63.8+0.7 —4.6 1-1 66 66.3+0.7 —-04
2-8 10 55402 20.6
GN (k) =6 1-4 17 129 +0.3 11.8 1-4 17 129 +£0.3 11.8
Collaborations
Astrophysics 1 755 1142 £ 13 -30.8 1-2 755 1128 16 —23.8
2-3 42 13.7+ 3.4 8.3 3-6 42 28.2+4.8 2.9
Netscience 1-5 81 233.1+74 -20.5 1-8 81 233.1+74 =205
Cond-mat 1 1971 3062 £ 23 —47.6 1 1561 2666 £31 —36.2
2-3 124 73.2+ 8.6 5.9 2-8 534 4685+13.2 5.0
High-energy 1-5 827 1277 £ 16 —29.1 1-6 827 1276 =16  —28.8
6-6 1 0.0 £0.1 9.9 7-7 1 0.5+£0.7 0.7
Information
Roget 1 31 58.7+2.1 —135 1 37 575+29 -7.1
2-3 11 1.2+ 1.1 9.0 2 5 24+ 13 2.0
Wordnet 1-5 9245 13304 £51 —-79.2 1-3 6323 11041 £62 —-76.2
6-7 3 1.5+13 1.2 4-208 2925 2264 £ 23 28.7
WwWw 1-2 16762 48108 + 108 —290.9 1-8 13402 45449 + 115 —278
3-21 308 49.6 +£6.2 41.9 9-5324 3668 2709 + 24 40.3
Books
David Copperfield 1-2 30 349+ 1.5 -33 1 24 33.0+28 32
2-3 6 19+13 3.0
Night and Day 1-2 14 18.5+0.7 —6.3 1 11 180+ 13 =52
2-3 3 0.5+0.6 4.0
On the origin of species 1-2 12 12.7+£ 0.6 —-1.3 1 11 124+11 -13
2 1 03105 1.5
Technological
Internet (AS) 1-3 1712 1427 £22 12.9 1-214 1710 1423 £22 13.0
215492 2 424038 -29
US airports 1-3 26 340428 —-2.8 1-2 19 294+37 28
3-12 7 46+13 1.8
Power grid 14 794 836 + 14 -3.1 1-2 715 797 £ 16 —-53
5-5 9 6.1 £25 1.2 3-12 90 485+5.6 7.4
Biological
Neural network 12 3 133+ 14 -7.5 1-3 1 132+15 -84
4-10 2 0.1 +£0.2 8.9
Genetic network 1-7 44 653+43 -5.0 1-8 37 620+46 —55
9-21 7 24412 39
22-41 0 1.0+0.2 —-5.7
Protein interaction 1-2 549 771 £ 15 —14.7 1-19 560 784 + 14 —15.7
34 21 147+34 1.9 20-75 10 1.3+0.5 16.1
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number of small trees and just a few deep trees. The Internet also exhibits many border trees
with few leaves. This phenomenon can be explained by the jelly-fish structure of this network,
which includes many nodes connected to the central kernel [30]. The power grid network
presents many shallow border trees with many leaves (star-like trees). This seems to be related
to the fact that the new nodes needed to cover a new region tend to be connected to the nearest
existing node. A similar organization was verified for the airport network.

The biological networks do not seem to exhibit a well-defined pattern of border trees.
Several of these networks have many highly branched border trees, though the protein—protein
interaction network incorporates an expressive number of border trees with depth 2 or 3. The
considered neuronal network presents features similar to those of the geographical theoretical
model. In the case of the genetic transcription network, the presence of many small trees with
many ramifications is a consequence of the fact that some genes participate in the regulation
of a large quantity of other genes. A similar situation is observed for the protein—protein
interaction network.

Observe that several networks such as the WWW, Wordnet, BA and WS (average degree
2) yielded particularly small Z-score values (for both depth and number of leaves). This effect
can be explained by the fact that the original networks contained large and deep trees (see
figures 2 and 3), which were split into many smaller trees by the rewiring procedure.

4.1. Local analysis of border trees

In some of the considered networks, the vertices are identified by labels and therefore it is
possible to make a functional analysis of the border trees. These networks are the protein—
protein interaction, the US air transportation network, Roget’s thesaurus network and the
Wordnet.

In the case of protein—protein interactions, the border trees are composed of proteins
that have a similar function along the trees, where proteins with similar functions tend to
be connected, as suggested by the majority rule [31]. On the other hand, proteins emerging
from different branches tend to have distinct functions. Also, the root proteins tend to be less
specific than the proteins at the leaves. For instance, the root protein P33418 (involved in
pre-tRNA splicing) is connected to protein P46672, which binds specifically G4 quadruplex
nucleic acid structures. This protein is linked to PO0958 and P46655 proteins, which form
a complex with glutamyl-tRNA synthetase and increase the catalytic efficiency of tRNA
synthetases [32]. The protein P46655 is connected to proteins P21957 and P34246. The latter
protein is connected to proteins P21957 and P34246, which are both uncharacterized proteins
(see figure 4(a)). Let us now consider the tree whose root is the protein P43609, which
is a component of the chromatin structure-remodeling complex—involved in transcription
regulation and nucleosome positioning. This protein is connected to proteins P32832, P47102
and Q03124. The protein P47102 is connected to P39993. These two proteins have similar
functions: they activate the ARF proteins by exchanging bound GDP for free GTP [32]. The
protein Q03124, which is also a component of the chromatin structure-remodeling complex,
is connected to P53101, which converts cystathionine into homocysteine (see figure 4(b)).
Therefore, we can see from these examples that the root proteins are more general than the
proteins at the leaves. Since proteins at the same level in the tree do not share connections,
they tend to be different with respect to their functions.

The US air transportation networks is basically composed of three types of airports:
international, regional and small airports. The border trees tend to have many leaves and low
depth (every border three has depth one), which suggests that airports with a small number
of links tend to be linked with a more connected one, instead of to have connections between

10



J. Phys. A: Math. Theor. 41 (2008) 224005 P R Villas Boas et al

Q03124 P53101
P21957

P4360 P32832

P33418 P46672

P00958 P34246

P39993

Figure 4. Example of border trees present in the considered protein—protein interaction network.
The root proteins are indicated by dark gray nodes.

them, which contributes to make the network small world (¢ = 2.74). We observed that
most root airports tend to be international and the airports at the border, regional or small. In
fact, 20 of the 26 roots are international airports. Among the exceptions, the Bethel Airport,
localized in Alaska, has properties of international airports, as it has connections to airports
in other states of US. Likewise, among the 55 airports at the leaves, only 5 are international.
Therefore, there is a high relation between the importance of the airports and their position on
the border trees.

In Roget’s thesaurus network, two words i and j are connected whenever they are directly
related. Therefore, the words in the border trees tend to be very specific, irrespective of the
remainder of the network. Also, just the words in the same branches are associated. For
instance, the border tree whose root is the word ‘demon’ is connected to words ‘Jupiter’ and
‘Satan’. The latter two words are not related. The word ‘Satan’ is connected to the word
‘angel’, which has no association with ‘Jupiter’. Most of the border trees in Roget’s thesaurus
network are trees without branches. These trees are also known as tails [4].

The Wordnet is another type of information network. Again, the same effect discussed
before tends to be observed: words at the same level of the tree tend not to be related. On
the other hand, words at the same branch tend to have similar functions. A good example
is the border tree associated with the word ‘sport’. At the first level, this word is connected
to ‘archery’, ‘team sport’, ‘cycling’, ‘nonresident’, ‘sledding’, ‘skating’ and ‘racing’. As we
can see, these words have no relation between them, but are associated with sports. Among
the ramifications, the word ‘cycling’ is connected to ‘bicycling’, ‘motorcycling’ and ‘dune
cycling’. The word ‘skating’ is connected to ‘roller skating’, ‘skateboarding’ and ‘ice skating’.
Therefore, words in different branches tend to have no semantic association.

Thus, border trees can be seen as structures whose leaves have functions which are
more specific than those of the roots. Therefore, while hubs are very general structures on
the networks, having associations with many other nodes, the leaves represent an opposite
situation.

5. Conclusions

This work has introduced the concept of border trees and presented a simple and effective
algorithm for their identification. Statistics of the presence of such motifs in several real-world
and theoretical networks were obtained and shown to provide valuable information regarding
the general structure of the analyzed networks. Unlike recent results obtained for chain
motifs [4], border trees were found in both theoretical and real-world networks. Among the
former, we obtained the largest tree for the BA with average degree equal to 2, while the WS
model exhibited the largest depth values. In the case of the real-world networks, the WWW
presented the largest overall measurements, suggesting that this network involves a larger
number of significant border trees, possibly corresponding to the more recently included
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nodes. The Internet and power-grid network (a geographical structure) presented similar
properties, though exhibiting the shortest depths. Though no well-defined, systematic pattern
was identified in the case of the biological networks, some specific structures emerged with
important implications. These concern a large number of shallow border trees with many
branches observed for the protein—protein interaction networks. A more in-depth study of
these structures has potential for unveiling important properties of the protein trees. We also
observed that the distribution of the depth, number of leaves and number of nodes of the border
trees follow a power-law with an exponential cut-off. The local analysis of border trees show
that the nodes in the periphery of the trees tend to be the most specific in the network. In this
way, the study of border trees can help in the investigations about the structure and function
in complex networks.
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